Sumas de Riemann
- mmarchernandezm
- 1 may 2013
- 1 Min. de lectura
En matemáticas, la suma de Riemann sirve para calcular el valor de una integral definida, es decir, el área bajo una curva, este método es muy útil cuando no es posible utilizar el Teorema fundamental del cálculo. Estas sumas toman su nombre del matemático alemánBernhard Riemann.
La suma de Riemann consiste en trazar un número finito de rectángulos dentro de un área irregular, calcular el área de cada uno de ellos y sumarlos. El problema de este método de integración numérica es que al sumar las áreas se obtiene un margen de error muy grande.
Definición[editar]
Consideremos lo siguiente:
una función
donde D es un subconjunto de los números reales
I = [a, b] un intervalo cerrado contenido en D.
Un conjunto finito de puntos {x0, x1, x2, ... xn} tales que a = x0 < x1 < x2 ... < xn = b
crean una partición de I
P = {[x0, x1), [x1, x2), ... [xn-1, xn]}
Si P es una partición con n elementos de I, entonces la suma de Riemann de f sobre I con la partición P se define como
donde xi-1 ≤ yi ≤ xi. La elección de yi en este intervalo es arbitraria.
Si yi = xi-1 para todo i, entonces denominamos S como la suma de Riemann por la izquierda.
Si yi = xi, entonces denominamos S como la suma de Riemann por la derecha.
Comments